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On Ideal Convergence of Sequences of Linear Operators
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Abstract. We investigate the problem of ideal convergence of the sequences of linear operators without
the properties of k−positivity in the space of analytic functions in a bounded simply connected domain of
complex plane.

1. Introduction

Let A (D) denote the space of all analytic functions in a bounded simply connected domain D and let
φ (z) be any function mapping D conformally and one to one on the unit disk. Since the system of functions
φk (z) , k = 0, 1, 2, ... is a basis in the space A (D) (see [3]), for every f ∈ A (D) the Taylor expansion of f is
given by

f (z) =

∞∑
k=0

fkφk (z) , (1)

where fk is the Taylor coefficients of f and satisfies

lim sup
k→∞

∣∣∣ fk∣∣∣ 1
k = 1. (2)

Note that Taylor coefficients of f are calculated by

fk =
1

2πi

∫
C

f (z)φ′ (z)(
φ (z)

)k+1
dz, (3)

where C is any contour lying in the interior of D. The series (1) under the condition (2) is uniformly
convergent if

∣∣∣φ (z)
∣∣∣ ≤ r < 1. Denoting∥∥∥ f

∥∥∥
A(D),r = max

|φ(z)|≤r<1

∣∣∣ f (z)
∣∣∣ , (4)
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we transfer A (D) in a Fréchet space with the family of norms ‖.‖A(D),r depending on r.
Let Tn be a sequence of linear operators acting from A (D) into A (D) . Then by (1), for any function

f ∈ A (D) we can write Taylor expansion of Tn f (z) as follows:

Tn f (z) =

∞∑
k=0

φk (z)
∞∑

m=0

fmT(n)
k,m, (5)

where T(n)
k,m is the Taylor coefficient of Tnφk (z) such that

lim sup
k→∞

∣∣∣∣∣∣∣
∞∑

m=0

fmT(n)
k,m

∣∣∣∣∣∣∣
1
k

= 1.

It is well known that the operator Tn is k−positive if and only if T(n)
k,m is nonnegative for all k,m, n (see [6] , [8]).

In the present paper, we deal with the sequences of linear operators (5) without properties of k−positivity.
We note that the definition of k−positivity of linear operators acting in the space of analytic functions in
the unit disk was introduced by Gadjiev [6] to establish analogues of the famous Korovkin theorem. Very
recently, this definition of k−positivity given in [6] has been used intensively in different approximation
problems (see [2, 7 − 10, 12, 13, 16]).

The statistical convergence was introduced in [4] and has been improved in various areas by a number
of authors (see [1] ; [5] ; [11] ; [15] ; [17] ; [18] ) . Notice that statistical convergence has been examined in
approximation theory by Gadjiev and Orhan [11] . In the paper [11] , the authors firstly proved the Korovkin
type theorems on statistical approximation and also gave the definition of order of statistical approximation
by positive linear operators. Recently, some different versions of statistical approximation by k−positive
linear operators were obtained in [2, 16] . Inspired by the recent works on these topics, we investigate the
problem of approximation of analytic functions and their derivatives by the sequences of linear operators
and their derivatives acting on the space of analytic functions in a simply connected bounded domain
without properties of k−positivity, via ideal convergence. So, our results are more general than obtained
results for k-positive cases.

Now, we recall the concept of ideal convergence first introduced in the paper [14] . Ideal convergence is
a generalization of the statistical convergence and it is based on the ideal of subsets of the setN of positive
integers.

Let X be a nonempty set. A class I of subsets of X is said to be an ideal in X provided that
(i) φ ∈ I,
(ii) if A,B ∈ I, then A ∪ B ∈ I,
(iii) if A ∈ I and B ⊆ A, then B ∈ I.
An ideal is called nontrivial if X < I. Also, a nontrivial ideal in X is called admissible if {x} ∈ I for each

x ∈ X. Let I be a nontrivial ideal inN.A sequence x := (xn) is ideal convergent (or I−convergent) to a number
L if for every ε > 0, {n ∈N : |xn − L| ≥ ε} ∈ I . Note that taking I = {K ⊆N : δA (K) = 0} , then I−convergence
coincides with A−statistical convergence, where A is a nonnegative regular summability matrix and δA (K)
denotes the A density of K. Moreover, if we choose A = C1, the Cesáro matrix of order one, then we obtain
the statistical convergence. Besides, if I is the class of all finite subsets ofN, then I−convergence reduces to
the ordinary convergence.

2. Ideal Approximation by Linear Operators

In this section, we present some sufficient conditions for approximation of analytic functions belonging
to some appropriate subspace of A (D) . For this aim firstly we will give the following definition introduced
in [10] to compute the degree of ideal convergence of sequences. Recall that in the paper [11] , this definition
is given for statistical convergence of sequences of linear positive operators.



N. Çetin / Filomat 30:1 (2016), 241–251 243

Definition 2.1. Let I be an admissible ideal inN. Then, one says that a sequence (xn) is ideal convergent to a number
L with degree 0 < β ≤ 1 if, for every ε > 0,{

n ∈N :
|xn − L|

n1−β ≥ ε
}
∈ I.

In this case, we write

xn − L = I − o
(
n−β

)
, as n→∞.

We note here that if we choose β = 1 in Definition 2.1, we immediately obtain the ideal convergence of
(xn) to L.

Also, the proof of our main theorems require the following lemma.

Lemma 2.2. Let I be an admissible ideal inN and let
(

fn
)

be a sequence of analytic functions on D with the Taylor
coefficients fn,k for each n ∈N and k ∈N0. Then, for 0 < β ≤ 1,∥∥∥ fn

∥∥∥
A(D),r = I − o

(
n−β

)
, as n→∞

if and only if∣∣∣ fn,k∣∣∣ ≤ εn (1 + δn)k , (6)

where

lim
n→∞

δn = 0 and εn = I − o
(
n−β

)
as n→∞. (7)

Proof. Suppose that (6) holds. Then, using (4) , we may write that

∥∥∥ fn
∥∥∥

A(D),r ≤ εn

∞∑
k=0

(1 + δn)k rk

for any r < 1. Since lim
n→∞

δn = 0, we have∥∥∥ fn
∥∥∥

A(D),r ≤
εn

1 − r (1 + δn)
.

Taking into account that lim
n→∞

1
1−r(1+δn) = 1

1−r is finite, there exists a positive constant K (r) such that for every
n ∈N

1
1 − r (1 + δn)

≤ K (r) .

Hence, it follows that∥∥∥ fn
∥∥∥

A(D),r ≤ εnK (r)

for every n ∈N. Now, for a given ε > 0, we define the following sets

U : =

n ∈N :

∥∥∥ fn
∥∥∥

A(D),r

n1−β ≥ ε

 ,
V : =

{
n ∈N :

εnK (r)
n1−β ≥ ε

}
.
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By the condition εn = I − o
(
n−β

)
as n → ∞, we obtain V ∈ I. Since U ⊆ V, using the definition of ideal,

we can write U ∈ I, which is desired result.
In order to prove the necessity, we choose δn tending to zero so slowly such that

εn := max
|φ(z)|= 1

1+δn
<1

∣∣∣ fn (z)
∣∣∣ = I − o

(
n−β

)
, as n→∞.

By using (3) , it follows that∣∣∣ fn,k∣∣∣ ≤ 1
2π

∫
|φ(z)|= 1

1+δn
<1

∣∣∣ fn (z)
∣∣∣ ∣∣∣φ′ (z)

∣∣∣∣∣∣φ (z)
∣∣∣k+1

|dz|

≤ εn

∫
|u|= 1

1+δn
<1

|du|

|u|k+1
= εn (1 + δn)k ,

whence the result.

Let 1k ≥ 1 be an increasing sequence of real numbers, lim sup
k→∞

1
1
k
k = 1 and let A1 (D) be the subspace of

functions in A (D) with Taylor coefficients fk satisfying the inequality
∣∣∣ fk∣∣∣ ≤M f1k (k = 0, 1, 2...) ,where M f is

a constant depending only on f . Also, assume that 1k satisfies the condition

lim sup
k→∞

(√
1k −

√
1k−1

) 1
k

= 1. (8)

Then, we can state the first main result of this section.

Theorem 2.3. Let I be an admissible ideal inN and let (Tn) be a sequence of linear operators from A (D) into A (D) .
If there exist sequences εn and δn satisfying (7) such that the following inequalities∣∣∣∣∣∣∣

∞∑
m=0

T(n)
k,m − 1

∣∣∣∣∣∣∣ < εn (1 + δn)k (9)

∣∣∣∣∣∣∣
∞∑

m=0

∣∣∣∣T(n)
k,m

∣∣∣∣ − 1

∣∣∣∣∣∣∣ < εn (1 + δn)k (10)

∣∣∣∣∣∣∣
∞∑

m=0

√
1m

∣∣∣∣T(n)
k,m

∣∣∣∣ − √1k

∣∣∣∣∣∣∣ < εn (1 + δn)k (11)

∣∣∣∣∣∣∣
∞∑

m=0

1m

∣∣∣∣T(n)
k,m

∣∣∣∣ − 1k

∣∣∣∣∣∣∣ < εn (1 + δn)k (12)

hold, then for any function f ∈ A1 (D) and 0 < β ≤ 1, we have∥∥∥Tn f − f
∥∥∥

A(D),r = I − o
(
n−β

)
as n→∞.

Proof. By (1) and (5) , for each function f ∈ A1 (D) , we can write

Tn f (z) − f (z) =

∞∑
k=0

φk (z)
∞∑

m=0

(
fm − fk

)
T(n)

k,m +

∞∑
k=0

φk (z) fk

 ∞∑
m=0

T(n)
k,m − 1

 .
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Using (4) , the last equality gives that for any r < 1

∥∥∥Tn f − f
∥∥∥

A(D),r ≤

∞∑
k=0

rk
∞∑

m=0

∣∣∣ fm − fk
∣∣∣ ∣∣∣∣T(n)

k,m

∣∣∣∣ +

∞∑
k=0

rk
∣∣∣ fk∣∣∣

∣∣∣∣∣∣∣
∞∑

m=0

T(n)
k,m − 1

∣∣∣∣∣∣∣ . (13)

By simple calculations, we easily obtain

∣∣∣ fm − fk
∣∣∣ ≤ 8M f

13
k

∆2
k

(
1
) (√
1m −

√
1k

)2
(14)

for all m, k ∈N0, where

∆k
(
1
)

= min
{√
1k −

√
1k−1;

√
1k+1 −

√
1k

}
. (15)

On the other hand, from the inequalities (10 − 12), it is easily verified that

∞∑
m=0

(√
1m −

√
1k

)2 ∣∣∣∣T(n)
k,m

∣∣∣∣ < εn (1 + δn)k
(
1 +
√
1k

)2

< 4εn (1 + δn)k
1k.

Combining respectively (14) , the last inequality and (9) in (13) , we have

∥∥∥Tn f − f
∥∥∥

A(D),r ≤ 32M fεn

∞∑
k=0

rk (1 + δn)k 14
k

∆2
k

(
1
) + M fεn

∞∑
k=0

rk (1 + δn)k
1k.

Since ∆2
k

(
1
)
≤ 21k, it follows

∥∥∥Tn f − f
∥∥∥

A(D),r ≤ 34M fεn

∞∑
k=0

rk (1 + δn)k 14
k

∆2
k

(
1
) .

Taking into account the conditions on 1k and (8) , the series on the right-hand side of the last inequality is
convergent for any 0 < r < 1 since δn is infinitely small sequence.

Now, for a given ε > 0, we consider the following sets

L : =

n ∈N :

∥∥∥Tn f − f
∥∥∥

A(D),r

n1−β ≥ ε

 ,
N : =

{
n ∈N :

εn

n1−βAn
(
1, r

)
≥ ε

}
,

where

An
(
1, r

)
= 34M f

∞∑
k=0

rk (1 + δn)k 14
k

∆2
k

(
1
) < ∞.

By the condition εn = I − o
(
n−β

)
as n → ∞, we get N ∈ I. Since L ⊆ N, according to the definition of ideal,

we can write L ∈ I. This completes the proof.

Remark 2.4. Note here that the conditions (9) and (10) in Theorem 2.3 don’t contain each other and both of these
conditions are essential for the proof of main results.
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Now, let us suppose that the sequence 1k has the form

1k = 1 + hk,

where hk is an increasing sequence. In this case the condition (8) has the form

lim sup
k→∞

(√
hk −

√
hk−1

) 1
k

= 1. (16)

The inequalities (11) and (12) in Theorem 2.3 take the forms∣∣∣∣∣∣∣
∞∑

m=0

√
1 + hm

∣∣∣∣T(n)
k,m

∣∣∣∣ − √
1 + hk

∣∣∣∣∣∣∣ < εn (1 + δn)k

∣∣∣∣∣∣∣
∞∑

m=0

(1 + hm)
∣∣∣∣T(n)

k,m

∣∣∣∣ − (1 + hk)

∣∣∣∣∣∣∣ < εn (1 + δn)k .

We shall show that in this particular case the conditions given above may be chosen in a simple form as∣∣∣∣∣∣∣
∞∑

m=0

√
hm

∣∣∣∣T(n)
k,m

∣∣∣∣ − √
hk

∣∣∣∣∣∣∣ < εn (1 + δn)k

∣∣∣∣∣∣∣
∞∑

m=0

hm

∣∣∣∣T(n)
k,m

∣∣∣∣ − hk

∣∣∣∣∣∣∣ < εn (1 + δn)k .

Then, for this particular case the next theorem can be stated as follows.

Theorem 2.5. Let I be an admissible ideal inN and let (Tn) be a sequence of linear operators Tn : A (D) → A (D) .
If there exist sequences εn and δn satisfying (7) such that the inequalities (9), (10),∣∣∣∣∣∣∣

∞∑
m=0

√
hm

∣∣∣∣T(n)
k,m

∣∣∣∣ − √
hk

∣∣∣∣∣∣∣ < εn (1 + δn)k (17)

∣∣∣∣∣∣∣
∞∑

m=0

hm

∣∣∣∣T(n)
k,m

∣∣∣∣ − hk

∣∣∣∣∣∣∣ < εn (1 + δn)k (18)

hold, then for any function f ∈ A1 (D) and 0 < β ≤ 1, with 1k = 1 + hk we have∥∥∥Tn f − f
∥∥∥

A(D),r = I − o
(
n−β

)
as n→∞.

Proof. Let f ∈ A1 (D) . By (4) , it is obvious that the inequality (13) holds. Also, since f ∈ A1 (D) , by making
rearrangements we immediately obtain

∣∣∣ fm − fk
∣∣∣ ≤ 4M f

12
k

∆2
k (h)

(√
hm −

√
hk

)2 [
1 + ∆2

k (h)
]
,

where ∆k (h) is given as at the above (15) . Considering 1 + ∆2
k (h) ≤ 1k, we easily arrive to

∣∣∣ fm − fk
∣∣∣ ≤ 4M f

13
k

∆2
k (h)

(√
hm −

√
hk

)2
. (19)
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Also, by using (10) , (17) and (18) we may write that

∞∑
m=0

(√
hm −

√
hk

)2 ∣∣∣∣T(n)
k,m

∣∣∣∣ <εn (1 + δn)k
(
1 +

√
hk

)2

<4εn (1 + δn)k
1k. (20)

Thus, applying the inequalities (19), (20) and (9) in (13) we conclude that

∥∥∥Tn f − f
∥∥∥

A(D),r ≤ 16M fεn

∞∑
k=0

rk (1 + δn)k 14
k

∆2
k (h)

+ M fεn

∞∑
k=0

rk (1 + δn)k
1k,

which implies

∥∥∥Tn f − f
∥∥∥

A(D),r ≤ 17M fεn

∞∑
k=0

rk (1 + δn)k 14
k

∆2
k (h)

.

Since by the conditions on 1k and (16) , we observe that the last series converges for any 0 < r < 1. Here,
the remain of the proof is similar with those in Theorem 2.3.

Now, we will give a general result on approximation in A (D) .

Theorem 2.6. Let I be an admissible ideal inN and let bk be an increasing sequence of positive numbers such that

lim sup
k→∞

b
1
k
k = 1 and 1k is defined as above. If the sequence of linear operators Tn : A (D) → A (D) satisfies the

conditions (9),∣∣∣∣∣∣∣
∞∑

m=0

1m

1 + bm

∣∣∣∣T(n)
k,m

∣∣∣∣ − 1k

1 + bk

∣∣∣∣∣∣∣ < εn (1 + δn)k (21)

∣∣∣∣∣∣∣
∞∑

m=0

√
bm

1 + bm
1m

∣∣∣∣T(n)
k,m

∣∣∣∣ − √
bk

1 + bk
1k

∣∣∣∣∣∣∣ < εn (1 + δn)k (22)

∣∣∣∣∣∣∣
∞∑

m=0

bm

1 + bm
1m

∣∣∣∣T(n)
k,m

∣∣∣∣ − bk

1 + bk
1k

∣∣∣∣∣∣∣ < εn (1 + δn)k , (23)

where εn and δn are the same as (7) , then for any function f ∈ A1 (D) and 0 < β ≤ 1, we have∥∥∥Tn f − f
∥∥∥

A(D),r = I − o
(
n−β

)
as n→∞.

Proof. Assume that the inequalities (21 − 23) and (9) hold. Obviously, by (4) , we may write the inequality
(13) for any function f ∈ A (D) . Since 1k ≥ 1 for each k = 0, 1, 2..., we obtain∣∣∣ fm − fk

∣∣∣ ≤ 2M f1k1m.

By direct computations, we can write

∣∣∣ fm − fk
∣∣∣ ≤ 8M f1k

1 + bk

∆2
k (b)

(√
bm −

√
bk

)2

1 + bm
1m, (24)
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where ∆k (b) is given as (15) . On the other hand, we conclude from the conditions (21 − 23) that

∞∑
m=0

(√
bm −

√
bk

)2

1 + bm
1m

∣∣∣∣T(n)
k,m

∣∣∣∣ < εn (1 + δn)k
(
1 +

√
bk

)2
. (25)

Using the inequalities (24) , (25) and (9) , we have

∥∥∥Tn f − f
∥∥∥

A(D),r ≤ 8M fεn

∞∑
k=0

rk (1 + δn)k
1k

1 + bk

∆2
k (b)

(
1 +

√
bk

)2
+ M fεn

∞∑
k=0

rk (1 + δn)k
1k,

which finally implies

∥∥∥Tn f − f
∥∥∥

A(D),r ≤ 9M fεn

∞∑
k=0

rk (1 + δn)k
1k

1 + bk

∆2
k (b)

(
1 +

√
bk

)2
.

Since the conditions on 1k and bk, the series on the right-hand side of the last inequality converges for
any 0 < r < 1. Therefore, applying similar reasoning as in the proof of Theorem 2.3, we get the desired
conclusion.

Note here that for example in Theorem 2.6, choosing 1k = 1+bk,we clearly get a theorem on convergence
in the subspace of A (D) of functions with Taylor coefficients satisfying

∣∣∣ fk∣∣∣ ≤M f (1 + bk) .

3. Ideal Approximation by Derivatives of Linear Operators

In this section, we obtain some theorems on simultaneous approximation of analytic functions by the
sequences of linear operators and their derivatives, by using the concept of ideal convergence. Before
stating our main theorems, we need the following auxiliary results.

Lemma 3.1. Let I be an admissible ideal inN and let
(

fn
)

be a sequence of analytic functions on D with the Taylor
coefficients fn,k for each n ∈N and k, p ∈N0. Then, for 0 < β ≤ 1,∥∥∥∥∥ f (p)

n

∥∥∥∥∥
A(D),r

= I − o
(
n−β

)
, as n→∞ (26)

if and only if∣∣∣ fn,k+p

∣∣∣ ≤ k!(
k + p

)
!
εn (1 + δn)k+p , (27)

where εn and δn are as in (7) .

Proof. Assume that the condition (26) holds. Taking into account the Taylor expansion of f , it is obvious
that

f (p)
n (z) =

∞∑
k=0

(k + 1) (k + 2) ...
(
k + p

)
fn,k+pφ

k (z) . (28)

Also, by Lemma 2.2, there exist sequences εn and δn satisfying (7) such that

(k + 1) (k + 2) ...
(
k + p

) ∣∣∣ fn,k+p

∣∣∣ ≤ εn (1 + δn)k ,
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which implies∣∣∣ fn,k+p

∣∣∣ ≤ k!(
k + p

)
!
εn (1 + δn)k+p .

Now, assume that (27) holds. Using (4) , we get∥∥∥∥∥ f (p)
n (z)

∥∥∥∥∥
A(D),r

≤

∞∑
k=0

(k + 1) ...
(
k + p

) ∣∣∣ fn,k+p

∣∣∣ rk

≤ εn (1 + δn)p
∞∑

k=0

(1 + δn)k rk

= εn
(1 + δn)p

1 − (1 + δn) r
.

Since lim
n→∞

(1+δn)p

1−r(1+δn) = 1
1−r is finite, there exists a positive constant M (r) such that for every n ∈N

(1 + δn)p

1 − r (1 + δn)
≤M (r) .

From this we obtain∥∥∥∥∥ f (p)
n

∥∥∥∥∥
A(D),r

≤ εnM (r)

for every n ∈ N. Using the same method as in the proof of the sufficiency part of Lemma 2.2, we arrive at
the assertion of the lemma.

Lemma 3.2. Let I be an admissible ideal in N and let
(

fn
)

be a sequence of analytic functions on D. Then, for any
p = 0, 1, 2... and 0 < β ≤ 1,∥∥∥∥∥ f (p)

n

∥∥∥∥∥
A(D),r

= I − o
(
n−β

)
, as n→∞

if and only if∥∥∥ fn
∥∥∥

A(D),r = I − o
(
n−β

)
, as n→∞. (29)

Proof. Suppose that the condition (29) holds. In view of Lemma 2.2, there exist sequences εn and δn satisfying
the conditions (6) and (7). Using (28) , for any p ∈N0 we obtain∥∥∥∥∥ f (p)

n

∥∥∥∥∥
A(D),r

≤ εn (1 + δn)p
∞∑

k=0

(k + 1) ...
(
k + p

)
(1 + δn)k rk. (30)

Also, since

1
1 − φ (z)

=

∞∑
k=0

φk (z)

for
∣∣∣φ (z)

∣∣∣ = r < 1, a simple computation shows that

p!(
1 − φ (z)

)p+1 =

∞∑
k=0

(k + 1) ...
(
k + p

)
φk (z)
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for any p ∈N0 with φ′ (z) , 0.
By applying the last equality in (30) , we arrive at∥∥∥∥∥ f (p)

n

∥∥∥∥∥
A(D),r

≤ εn (1 + δn)p p!

(1 − (1 + δn) r)p+1 .

The rest of the proof follows from the sufficiency part of Lemma 2.2.

We recall that the Lemmas 3.1 and 3.2 were proved in the paper [7] for statistical convergence of analytic
functions in the unit disk by the sequences of k−positive linear operators.

Now, let Tn be a sequence of linear operators acting from A (D) into A (D) . Then, by (5) and (28), we
obtain that for each p ∈N0,

dp

dzp Tn f (z) := T(p)
n f (z) =

∞∑
k=0

φk (z) (k + 1) ...
(
k + p

) ∞∑
m=0

T(n)
k+p,m fm.

In view of Lemma 3.2, we immediately obtain the following results which are correspondingly the corollaries
of Theorems 2.3, 2.5 and 2.6.

Proposition 3.3. Let I be an admissible ideal inN and let (Tn) be a sequence of linear operators Tn : A (D)→ A (D) .
If there exist sequences εn and δn satisfying (7) such that the inequalities (9) , (10) , (11) and (12) hold, then for any
function f ∈ A1 (D) and 0 < β ≤ 1, we have∥∥∥∥∥T(p)

n f − f (p)
∥∥∥∥∥

A(D),r
= I − o

(
n−β

)
as n→∞.

Proposition 3.4. Let I be an admissible ideal in N and assume that the hypothesis of Theorem 2.5 or Theorem 2.6
holds. Then for any function f ∈ A1 (D) and 0 < β ≤ 1, we have∥∥∥∥∥T(p)

n f − f (p)
∥∥∥∥∥

A(D),r
= I − o

(
n−β

)
as n→∞.

In conclusion we note that if we take I = {K ⊆N : δA (K) = 0} , then I−convergence reduces to A−statistical
convergence, where A =

(
a jn

)
is a nonnegative regular summability matrix and δA (K) denotes the A density

of K. Corresponding results are natural corollaries of Theorems 2.3, 2.5 and 2.6 and Propositions 3.3 and 3.4.
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[14] P. Kostyrko, T. Šalát and W. Wilczyński, “I-Convergence,” Real Anal. Exchange 26 (2) (2000-2001) 669–686.
[15] H.I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Amer. Math. Soc. 347 (1995)

1811-1819.
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